Prediction of gene knockout strategies using python's optknock linear programming in Iyali4 of Yarrowia Lipolytica for lycopene production
Portada de Predicción de estrategias de eliminación génica con programación lineal optknock de python en Iyali4 de Yarrowia Lipolytica para producir licopeno
PDF (Español (España))

Keywords

Yarrowia lipolytica
OptKnock
FBA
Metabolic engineering
Lycopene
COBRApy
Cameo
Gene knockout
Production envelopes
GEM
iYali4
Linear programming
PGM2

How to Cite

Quinga Socasi, M. G., Flores García, A. E., Lema Amaquiña, D. I., Moscoso Vallejo, L. V., & Pazmiño Naranjo, M. G. . (2024). Prediction of gene knockout strategies using python’s optknock linear programming in Iyali4 of Yarrowia Lipolytica for lycopene production. Journal SCIENCEVOLUTION, 4(12), 92–99. https://doi.org/10.61325/ser.v4i12.128

ARK

https://n2t.net/ark:/55066/SER.v4i12.128

Abstract

In this study, the linear programming algorithm OptKnock was applied in Python to the GEM model iYali4 of Yarrowia lipolytica to predict gene knockout strategies and optimize lycopene production. Since this yeast does not naturally produce lycopene, heterologous pathways were additionally incorporated. The metabolic engineering analysis packages used included Cameo and COBRApy; constraint-based metabolic models, specifically FBA, were applied for optimization. Phenotypic phase plane plots (production envelopes) were generated to visualize various phases of optimal growth with different usages of two substrates, oxygen and nitrogen. The optimization also involved analyzing the deletion of the PGM2 gene (phosphoglucomutase), predicted by OptKnock. The FBA results indicated a lycopene production rate of 0,0567 mmol/gDCW/h upon deletion of the PGM2 gene, demonstrating that the predicted gene deletion approach was suitable for simulating and enhancing lycopene production using the iYali4 model of this yeast. However, biomass production was compromised, reducing the microorganism’s growth rate to near zero.

https://doi.org/10.61325/ser.v4i12.128
PDF (Español (España))

References

Burgard, A. P., Pharkya, P., & Maranas, C. D. (2003). Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnology and Bioengineering, 84(6), 647–657. https://doi.org/10.1002/bit.10803

Cardoso, J. G. R., Jensen, K., Lieven, C., Hansen, A. S. L., Galkina, S., Beber, M., Özdemir, E., Herrgård, M. J., Redestig, H., & Sonnenschein, N. (2018). Cameo: A Python library for computer aided metabolic engineering and optimization of cell factories. ACS Synthetic Biology, 7(4), 1163–1166. https://doi.org/10.1021/acssynbio.7b00423

Chen, X., Lim, X., Bouin, A. et al. (2021). High-level de novo biosynthesis of glycosylated zeaxanthin and astaxanthin in Escherichia coli. (2021). Bioresour. Bioprocess. 8, 67. https://doi.org/10.1186/s40643-021-00415-0

Ebrahim, A., Lerman, J. A., Palsson, B. O., & Hyduke, D. R. (2013). COBRApy: COnstraints-based reconstruction and analysis for Python. BMC Systems Biology, 7(1), 1-6. https://doi.org/10.1186/1752-0509-7-74

Edwards, J.S., Covert, M. and Palsson, B. (2002). Metabolic modelling of microbes: the flux-balance approach. Environmental Microbiology, 4: 133-140. https://doi.org/10.1046/j.1462-2920.2002.00282.x

Hucka, M., Bergmann, F. T., Dräger, A., Hoops, S., Keating, S. M., Le Novère, N., Myers, C. J., Olivier, B. G., Sahle, S., Schaff, J. C., Smith, L. P., Waltemath, D., & Wilkinson, D. J. (2018). The Systems Biology Markup Language (SBML): Language Specification for Level 3 Version 2 Core. Journal of integrative bioinformatics, 15(1), 20170081. https://doi.org/10.1515/jib-2017-0081

Jach, M. E., & Malm, A. (2022). Yarrowia lipolytica as an Alternative and Valuable Source of Nutritional and Bioactive Compounds for Humans. Molecules (Basel, Switzerland), 27(7), 2300. https://doi.org/10.3390/molecules27072300

Larroude, M., Rossignol, T., Nicaud, J. M., & Ledesma-Amaro, R. (2018). Synthetic biology tools for engineering Yarrowia lipolytica. Biotechnology advances, 36(8), 2150- 2164. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6261845/

Motamedian E, Berzins K, Muiznieks R, Stalidzans E. (2023). OptEnvelope: A target point guided method for growth-coupled production using knockouts. PLOS ONE 18(11): e0294313. https://doi.org/10.1371/journal.pone.0294313

Nambou K, Jian X, Zhang X, Wei L, Lou J, Madzak C, Hua Q. (2015). Flux Balance Analysis Inspired Bioprocess Upgrading for Lycopene Production by a Metabolically Engineered Strain of Yarrowia lipolytica. Metabolites, 5(4):794-813. https://doi.org/10.3390/metabo5040794

Quinga, M. G. (2023). Desarrollo de algoritmos para optimizar la producción de licopeno en Yarrowia lipolytica usando herramientas computacionales de ingeniería metabólica en Python [Tesis de Maestría en Biología Computacional]. Pontificia Universidad Católica del Ecuador (PUCE). https://repositorio.puce.edu.ec/handle/123456789/27465

Saccharomyces Genome Database (SGD). (2024). PGM2 gene overview. SGD. Recuperado el 7 de noviembre de 2024, de https://www.yeastgenome.org/locus/S000001272

Schwartz, C., Frogue, K., Misa, J., & Wheeldon, I. (2017). Host and Pathway Engineering for Enhanced Lycopene Biosynthesis in Yarrowia lipolytica. Frontiers in microbiology, 8, 2233. https://doi.org/10.3389/fmicb.2017.02233

Takeshima, M., Ono, M., Higuchi, T., Chen, C., Hara, T., & Nakano, S. (2014). Anti‐proliferative and apoptosis‐inducing activity of lycopene against three subtypes of human breast cancer cell lines. Cancer Science, 105(3), 252–257. https://doi.org/10.1111/cas.12349

Tepper, N., & Shlomi, T. (2010). Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Bioinformatics, 26(4), 536–543. https://doi.org/10.1093/bioinformatics/btp704

Yan, J., Han, B., Gui, X., Wang, G., Xu, L., Yan, Y., Madzak, C., Pan, D., Wang, Y., Zha, G., & Jiao, L. (2018). Engineering Yarrowia lipolytica to Simultaneously Produce Lipase and Single Cell Protein from Agro-industrial Wastes for Feed. Scientific Reports, 8(1), 758 https://doi.org/10.1038/s41598-018-19238-9

Zhang, G., Wang, H., Zhang, Z., Verstrepen, K. J., Wang, Q., & Dai, Z. (2021). Metabolic engineering of Yarrowia lipolytica for terpenoids production: advances and perspectives. Critical Reviews in Biotechnology, 42(4), 618–633. https://doi.org/10.1080/07388551.2021.1947183

Zhang N., Li X., Zhou Q., Zhang Y., Lv B., Hu B. & Li C. (2024). Self-controlled in silico gene knockdown strategies to enhance the sustainable production of heterologous terpenoid by Saccharomyces cerevisiae. Metabolic Engineering., 83 (2024), 172-182. https://doi.org/10.1016/j.ymben.2024.04.005

Zhang, J., Bai, Q., Peng, Y., Fan, J., Jin, C., Cao, Y., & Yuan, Y. (2020). High production of triterpenoids in Yarrowia lipolytica through manipulation of lipid components. Biotechnology for Biofuels, 13(1). https://doi.org/10.1186/s13068-020-01773-1

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 http://revista.sciencevolution.com/