Abstract
In this study, the linear programming algorithm OptKnock was applied in Python to the GEM model iYali4 of Yarrowia lipolytica to predict gene knockout strategies and optimize lycopene production. Since this yeast does not naturally produce lycopene, heterologous pathways were additionally incorporated. The metabolic engineering analysis packages used included Cameo and COBRApy; constraint-based metabolic models, specifically FBA, were applied for optimization. Phenotypic phase plane plots (production envelopes) were generated to visualize various phases of optimal growth with different usages of two substrates, oxygen and nitrogen. The optimization also involved analyzing the deletion of the PGM2 gene (phosphoglucomutase), predicted by OptKnock. The FBA results indicated a lycopene production rate of 0,0567 mmol/gDCW/h upon deletion of the PGM2 gene, demonstrating that the predicted gene deletion approach was suitable for simulating and enhancing lycopene production using the iYali4 model of this yeast. However, biomass production was compromised, reducing the microorganism’s growth rate to near zero.
References
Burgard, A. P., Pharkya, P., & Maranas, C. D. (2003). Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnology and Bioengineering, 84(6), 647–657. https://doi.org/10.1002/bit.10803
Cardoso, J. G. R., Jensen, K., Lieven, C., Hansen, A. S. L., Galkina, S., Beber, M., Özdemir, E., Herrgård, M. J., Redestig, H., & Sonnenschein, N. (2018). Cameo: A Python library for computer aided metabolic engineering and optimization of cell factories. ACS Synthetic Biology, 7(4), 1163–1166. https://doi.org/10.1021/acssynbio.7b00423
Chen, X., Lim, X., Bouin, A. et al. (2021). High-level de novo biosynthesis of glycosylated zeaxanthin and astaxanthin in Escherichia coli. (2021). Bioresour. Bioprocess. 8, 67. https://doi.org/10.1186/s40643-021-00415-0
Ebrahim, A., Lerman, J. A., Palsson, B. O., & Hyduke, D. R. (2013). COBRApy: COnstraints-based reconstruction and analysis for Python. BMC Systems Biology, 7(1), 1-6. https://doi.org/10.1186/1752-0509-7-74
Edwards, J.S., Covert, M. and Palsson, B. (2002). Metabolic modelling of microbes: the flux-balance approach. Environmental Microbiology, 4: 133-140. https://doi.org/10.1046/j.1462-2920.2002.00282.x
Hucka, M., Bergmann, F. T., Dräger, A., Hoops, S., Keating, S. M., Le Novère, N., Myers, C. J., Olivier, B. G., Sahle, S., Schaff, J. C., Smith, L. P., Waltemath, D., & Wilkinson, D. J. (2018). The Systems Biology Markup Language (SBML): Language Specification for Level 3 Version 2 Core. Journal of integrative bioinformatics, 15(1), 20170081. https://doi.org/10.1515/jib-2017-0081
Jach, M. E., & Malm, A. (2022). Yarrowia lipolytica as an Alternative and Valuable Source of Nutritional and Bioactive Compounds for Humans. Molecules (Basel, Switzerland), 27(7), 2300. https://doi.org/10.3390/molecules27072300
Larroude, M., Rossignol, T., Nicaud, J. M., & Ledesma-Amaro, R. (2018). Synthetic biology tools for engineering Yarrowia lipolytica. Biotechnology advances, 36(8), 2150- 2164. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6261845/
Motamedian E, Berzins K, Muiznieks R, Stalidzans E. (2023). OptEnvelope: A target point guided method for growth-coupled production using knockouts. PLOS ONE 18(11): e0294313. https://doi.org/10.1371/journal.pone.0294313
Nambou K, Jian X, Zhang X, Wei L, Lou J, Madzak C, Hua Q. (2015). Flux Balance Analysis Inspired Bioprocess Upgrading for Lycopene Production by a Metabolically Engineered Strain of Yarrowia lipolytica. Metabolites, 5(4):794-813. https://doi.org/10.3390/metabo5040794
Quinga, M. G. (2023). Desarrollo de algoritmos para optimizar la producción de licopeno en Yarrowia lipolytica usando herramientas computacionales de ingeniería metabólica en Python [Tesis de Maestría en Biología Computacional]. Pontificia Universidad Católica del Ecuador (PUCE). https://repositorio.puce.edu.ec/handle/123456789/27465
Saccharomyces Genome Database (SGD). (2024). PGM2 gene overview. SGD. Recuperado el 7 de noviembre de 2024, de https://www.yeastgenome.org/locus/S000001272
Schwartz, C., Frogue, K., Misa, J., & Wheeldon, I. (2017). Host and Pathway Engineering for Enhanced Lycopene Biosynthesis in Yarrowia lipolytica. Frontiers in microbiology, 8, 2233. https://doi.org/10.3389/fmicb.2017.02233
Takeshima, M., Ono, M., Higuchi, T., Chen, C., Hara, T., & Nakano, S. (2014). Anti‐proliferative and apoptosis‐inducing activity of lycopene against three subtypes of human breast cancer cell lines. Cancer Science, 105(3), 252–257. https://doi.org/10.1111/cas.12349
Tepper, N., & Shlomi, T. (2010). Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Bioinformatics, 26(4), 536–543. https://doi.org/10.1093/bioinformatics/btp704
Yan, J., Han, B., Gui, X., Wang, G., Xu, L., Yan, Y., Madzak, C., Pan, D., Wang, Y., Zha, G., & Jiao, L. (2018). Engineering Yarrowia lipolytica to Simultaneously Produce Lipase and Single Cell Protein from Agro-industrial Wastes for Feed. Scientific Reports, 8(1), 758 https://doi.org/10.1038/s41598-018-19238-9
Zhang, G., Wang, H., Zhang, Z., Verstrepen, K. J., Wang, Q., & Dai, Z. (2021). Metabolic engineering of Yarrowia lipolytica for terpenoids production: advances and perspectives. Critical Reviews in Biotechnology, 42(4), 618–633. https://doi.org/10.1080/07388551.2021.1947183
Zhang N., Li X., Zhou Q., Zhang Y., Lv B., Hu B. & Li C. (2024). Self-controlled in silico gene knockdown strategies to enhance the sustainable production of heterologous terpenoid by Saccharomyces cerevisiae. Metabolic Engineering., 83 (2024), 172-182. https://doi.org/10.1016/j.ymben.2024.04.005
Zhang, J., Bai, Q., Peng, Y., Fan, J., Jin, C., Cao, Y., & Yuan, Y. (2020). High production of triterpenoids in Yarrowia lipolytica through manipulation of lipid components. Biotechnology for Biofuels, 13(1). https://doi.org/10.1186/s13068-020-01773-1

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2024 http://revista.sciencevolution.com/